组织病理学图像提供了癌症诊断的明确来源,其中包含病理学家用来识别和分类恶性疾病的信息,并指导治疗选择。这些图像包含大量信息,其中大部分目前不可用人类的解释。有监督的深度学习方法对于分类任务非常有力,但它们本质上受注释的成本和质量限制。因此,我们开发了组织形态表型学习,这是一种无监督的方法,它不需要注释,并且通过小图像瓷砖中的歧视性图像特征的自我发现进行操作。瓷砖分为形态上相似的簇,这些簇似乎代表了自然选择下出现的肿瘤生长的复发模式。这些簇具有不同的特征,可以使用正交方法识别。应用于肺癌组织,我们表明它们与患者的结局紧密保持一致,组织病理学识别的肿瘤类型和生长模式以及免疫表型的转录组度量。
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
计算机系统的程序或功能中存在的软件漏洞是一个严重且至关重要的问题。通常,在由数百或数千个源代码语句组成的程序或功能中,只有很少的语句引起相应的漏洞。当前,在机器学习工具的协助下,专家在功能或程序级别上进行了脆弱性标签。将这种方法扩展到代码语句级别的成本更高和耗时,并且仍然是一个开放的问题。在本文中,我们提出了一种新颖的端到端深度学习方法,以识别与特定功能相关的脆弱性代码语句。受到现实世界中脆弱代码中观察到的特定结构的启发,我们首先利用相互信息来学习一组潜在变量,代表源代码语句与相应函数的漏洞的相关性。然后,我们提出了新颖的群集空间对比学习,以进一步改善与脆弱性相关的代码语句的强大选择过程。 200K+ C/C ++功能的实际数据集的实验结果表明,我们方法的优越性比其他最先进的基线相比。通常,我们的方法在无需监督的环境中在现实世界数据集上运行时,在Baselines上,VCP,VCA和TOP-10 ACC测量的较高性能在3 \%至14 \%之间。我们已发布的源代码样本可在\ href {https://github.com/vannguyennd/livuitcl} {https://github.com/vannguyennd/livuitcl。} {
translated by 谷歌翻译
由于计算机软件的普遍性,软件漏洞(SVS)已成为普遍,严重和至关重要的问题。已经提出了许多基于机器学习的方法来解决软件漏洞检测(SVD)问题。但是,关于SVD仍然存在两个开放和重大问题,就i)学习自动表示以提高SVD的预测性能,ii)解决常规需要专家的标签漏洞数据集的稀缺性数据集。在本文中,我们提出了一种新颖的端到端方法来解决这两个关键问题。我们首先利用自动表示学习,并具有深层域的适应性,以进行软件漏洞检测。然后,我们提出了一个新型的跨域内核分类器,利用最大额度额定原则,以显着改善从标记项目到未标记的项目的软件漏洞的传输学习过程。现实世界软件数据集的实验结果表明,我们提出的方法优于最先进的基准。简而言之,与使用数据集中的第二高方法相比,我们的方法在SVD中获得了更高的F1量化性能,这是SVD中最重要的度量,从1.83%到6.25%。我们已发布的源代码样本可在https://github.com/vannguyennd/dam2p上公开获取
translated by 谷歌翻译
神经网络修剪可以有效地用于压缩自动语音识别(ASR)模型。但是,在多语言ASR中,执行语言不足的修剪可能会导致某些语言的严重性能降解,因为语言 - 敏捷的修剪口罩可能不符合所有语言,并丢弃了重要的语言特定参数。在这项工作中,我们提出了ASR路径,这是一种稀疏的多语言ASR模型,该模型激活了特定语言的子网络(“路径”),从而明确地学习了每种语言的参数。通过重叠的子网络,共享参数还可以通过联合多语言培训来实现较低资源语言的知识传输。我们提出了一种新型算法来学习ASR途径,并通过流式RNN-T模型评估了4种语言的建议方法。我们提出的ASR途径的表现都优于密集模型(平均-5.0%)和语言不足的修剪模型(平均-21.4%),并且与单语稀疏模型相比,低资源语言的性能更好。
translated by 谷歌翻译
本文提出了第二版的头部和颈部肿瘤(Hecktor)挑战的概述,作为第24届医学图像计算和计算机辅助干预(Miccai)2021的卫星活动。挑战由三个任务组成与患有头颈癌(H&N)的患者的PET / CT图像的自动分析有关,专注于oropharynx地区。任务1是FDG-PET / CT图像中H&N主肿瘤肿瘤体积(GTVT)的自动分割。任务2是来自同一FDG-PET / CT的进展自由生存(PFS)的自动预测。最后,任务3与任务2的任务2与参与者提供的地面真理GTVT注释相同。这些数据从六个中心收集,总共325个图像,分为224个培训和101个测试用例。通过103个注册团队和448个结果提交的重要参与,突出了对挑战的兴趣。在第一任务中获得0.7591的骰子相似度系数(DSC),分别在任务2和3中的0.7196和0.6978的一致性指数(C-Index)。在所有任务中,发现这种方法的简单性是确保泛化性能的关键。 PFS预测性能在任务2和3中的比较表明,提供GTVT轮廓对于实现最佳结果,这表明可以使用完全自动方法。这可能避免了对GTVT轮廓的需求,用于可重复和大规模的辐射瘤研究的开头途径,包括千元潜在的受试者。
translated by 谷歌翻译
我们通过在计算图的空间中搜索计算基于值的无模型RL代理以优化的计算函数来提出一种用于元学习增强学习算法的方法。学到的算法是域 - 不可思议的,可以推广到训练期间未见的新环境。我们的方法既可以从头开始学习,又可以从已知的现有算法(例如DQN)学习,从而实现可解释的修改,从而改善性能。从头开始学习简单的经典控制和网格世界任务,我们的方法重新发现了时间差异(TD)算法。我们从DQN进行了引导,我们重点介绍了两种学到的算法,这些算法比其他经典控制任务,GridWorld类型任务和Atari游戏获得了良好的概括性能。对学习算法行为的分析表明,与最近提出的RL算法相似,该算法解决了基于价值的方法的高估。
translated by 谷歌翻译
深度强化学习(RL)导致了许多最近和开创性的进步。但是,这些进步通常以培训的基础体系结构的规模增加以及用于训练它们的RL算法的复杂性提高,而均以增加规模的成本。这些增长反过来又使研究人员更难迅速原型新想法或复制已发表的RL算法。为了解决这些问题,这项工作描述了ACME,这是一个用于构建新型RL算法的框架,这些框架是专门设计的,用于启用使用简单的模块化组件构建的代理,这些组件可以在各种执行范围内使用。尽管ACME的主要目标是为算法开发提供一个框架,但第二个目标是提供重要或最先进算法的简单参考实现。这些实现既是对我们的设计决策的验证,也是对RL研究中可重复性的重要贡献。在这项工作中,我们描述了ACME内部做出的主要设计决策,并提供了有关如何使用其组件来实施各种算法的进一步详细信息。我们的实验为许多常见和最先进的算法提供了基准,并显示了如何为更大且更复杂的环境扩展这些算法。这突出了ACME的主要优点之一,即它可用于实现大型,分布式的RL算法,这些算法可以以较大的尺度运行,同时仍保持该实现的固有可读性。这项工作提出了第二篇文章的版本,恰好与模块化的增加相吻合,对离线,模仿和从演示算法学习以及作为ACME的一部分实现的各种新代理。
translated by 谷歌翻译
We demonstrate a proof-of-concept of a large language model conducting corporate lobbying related activities. We use an autoregressive large language model (OpenAI's text-davinci-003) to determine if proposed U.S. Congressional bills are relevant to specific public companies and provide explanations and confidence levels. For the bills the model deems as relevant, the model drafts a letter to the sponsor of the bill in an attempt to persuade the congressperson to make changes to the proposed legislation. We use hundreds of ground-truth labels of the relevance of a bill to a company to benchmark the performance of the model, which outperforms the baseline of predicting the most common outcome of irrelevance. However, we test the ability to determine the relevance of a bill with the previous OpenAI GPT-3 model (text-davinci-002), which was state-of-the-art on many language tasks until text-davinci-003 was released on November 28, 2022. The performance of text-davinci-002 is worse than simply always predicting that a bill is irrelevant to a company. These results suggest that, as large language models continue to improve core natural language understanding capabilities, performance on corporate lobbying related tasks will continue to improve. We then discuss why this could be problematic for societal-AI alignment.
translated by 谷歌翻译
Variational autoencoders model high-dimensional data by positing low-dimensional latent variables that are mapped through a flexible distribution parametrized by a neural network. Unfortunately, variational autoencoders often suffer from posterior collapse: the posterior of the latent variables is equal to its prior, rendering the variational autoencoder useless as a means to produce meaningful representations. Existing approaches to posterior collapse often attribute it to the use of neural networks or optimization issues due to variational approximation. In this paper, we consider posterior collapse as a problem of latent variable non-identifiability. We prove that the posterior collapses if and only if the latent variables are non-identifiable in the generative model. This fact implies that posterior collapse is not a phenomenon specific to the use of flexible distributions or approximate inference. Rather, it can occur in classical probabilistic models even with exact inference, which we also demonstrate. Based on these results, we propose a class of latent-identifiable variational autoencoders, deep generative models which enforce identifiability without sacrificing flexibility. This model class resolves the problem of latent variable non-identifiability by leveraging bijective Brenier maps and parameterizing them with input convex neural networks, without special variational inference objectives or optimization tricks. Across synthetic and real datasets, latent-identifiable variational autoencoders outperform existing methods in mitigating posterior collapse and providing meaningful representations of the data.
translated by 谷歌翻译